An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene
نویسندگان
چکیده
The one-pot Diels-Alder cycloaddition (DAC)/dehydration (D) tandem reaction between 2,5-dimethylfuran and ethylene is a potent pathway toward biomass-derived p-xylene. In this work, we present a cheap and active low-silica potassium-exchanged faujasite (KY, Si/Al = 2.6) catalyst. Catalyst optimization was guided by a computational study of the DAC/D reaction mechanism over different alkali-exchanged faujasites using periodic density functional theory calculations complemented by microkinetic modeling. Two types of faujasite models were compared, i.e., a high-silica alkali-exchanged faujasite model representing isolated active cation sites and a low-silica alkali-exchanged faujasite in which the reaction involves several cations in the proximity. The mechanistic study points to a significant synergetic cooperative effect of the ensemble of cations in the faujasite supercage on the DAC/D reaction. Alignment of the reactants by their interactions with the cationic sites and stabilization of reaction intermediates contribute to the high catalytic performance. Experiments confirmed the prediction that KY is the most active catalyst among low-silica alkali-exchanged faujasites. This work is an example of how the catalytic reactivity of zeolites depends on multiple interactions between the zeolite and reagents.
منابع مشابه
Multi‐site Cooperativity in Alkali‐Metal‐Exchanged Faujasites for the Production of Biomass‐Derived Aromatics
The catalytic Diels-Alder cycloaddition-dehydration (DACD) reaction of furanics with ethylene is a promising route to bio-derived aromatics. The reaction can be catalyzed by alkali-metal-exchanged faujasites. Herein, the results of periodic DFT calculations based on accurate structural models of alkali-metal-exchanged zeolites are presented, revealing the fundamental roles that confinement and ...
متن کاملKinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels−Alder Products
Renewable production of p-xylene from [4 + 2] Diels− Alder cycloaddition of 2,5-dimethylfuran (DMF) and ethylene with H−Y zeolite catalyst in n-heptane solvent is investigated. Experimental studies varying the solid acid catalyst concentration reveal two kinetic regimes for the p-xylene production rate: (i) a linear regime at low acid site concentrations with activation energy Ea = 10.8 kcal/mo...
متن کاملOn the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene.
Polyethylene terephthalate (PET) is a polymeric material with high global demand. Conventionally, PET is produced from fossil-fuel-based materials. Herein, we explored the feasibility of a sustainable method for PET production by using solely bio-renewable resources. Specifically, 2,5-dimethylfuran (derived from lignocellulosic biomass through 5-(hydroxymethyl)furfural) and acrolein (produced f...
متن کاملSynthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.
Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder ...
متن کاملRoute to Renewable PET: Reaction Pathways and Energetics of Diels−Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves
Silica molecular sieves that have the zeolite beta topology and contain framework Lewis acid centers (e.g., Zr-β, Sn-β) are useful catalysts in the Diels−Alder and dehydrative aromatization reactions between ethylene and various renewable furans for the production of biobased terephthalic acid precursors. Here, the main side products in the synthesis of methyl 4-(methoxymethyl)benzene carboxyla...
متن کامل